
Standardized and reproducible biomarkers are an impor-
tant component of basic and clinical cancer research and 
are one of the pillars of personalized health care. The 
tumour, nodes, metastasis (TNM) staging system pub-
lished simultaneously by the Union for International 
Cancer Control (UICC) and by the American Joint 
Committee on Cancer (AJCC) remains the gold standard 
for the classification of malignant tumours1,2. Additionally, 
the World Health Organization (WHO) classifications of 
tumours are largely focused on the pathogenetic aspects, 
providing histological and molecular categorizations 
incorporating both established and promising potential 
biomarkers3.

For most tumour types, the TNM classifications 
include prognostic factor summary ‘grids’ comprising 
three categories, namely (1) essential, (2) additional, 
and (3) new and promising prognostic factors. Features 
in each of these categories can be related to the tumour, 
host or environment, with histology, age and access 
to treatment as respective examples. The prognostic 
factors assigned to these categories vary substantially 
depending on the anatomical location of the primary 
tumour, the tumour subtype and the weight of evidence 
supporting their prognostic value. For example, in the 
eighth edition of the TNM classification, perineural 
invasion is included as an ‘essential’ prognostic fac-
tor in tumours of the major salivary glands but as an 

‘additional’ factor in tumours of the skin, colorectum 
or appendix1,4–6.

Tumour budding (or ‘sprouting’) and its association 
with disease progression in patients with various solid 
cancers was first described by Imai in the 1950s7. More 
recently, tumour budding, typically defined as the pres-
ence of isolated single cancer cells or clusters of up to 
four cancer cells at the invasive tumour front (Fig. 1), has 
emerged as a promising prognostic biomarker across 
several different tumour types, predicting disease 
progression and unfavourable survival8,9. Biologically, 
tumour buds are part of the tumour microenvironment 
(TME) and are associated with epithelial–mesenchymal 
transition (EMT)10. Although most prominent at the 
invasive front, tumour buds can also be found within 
the main tumour body and, therefore, the term ‘intra-
tumoural budding’ (ITB) has been introduced to 
distinguish this form of budding from the ‘classic’ 
peritumoural budding (PTB)11.

The publication of the International Tumour 
Budding Consensus Conference (ITBCC) grading rec-
ommendations in 2017 (ref.12) has led to the standardi-
zation of tumour budding assessment and reporting by 
pathologists in the context of colorectal cancer (CRC). 
At present, tumour budding has the potential to influ-
ence clinical decision-​making in two main scenarios. 
First, in patients with pT1 CRC, intermediate-​grade or 
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high-​grade tumour budding is an independent predic-
tor of lymph node metastasis and is increasingly con-
sidered (along with other clinicopathological factors) 
when deciding on the need for radical surgery (rather 
than local excision of the tumour). Second, in patients 
with stage II colon cancer, high-​grade tumour bud-
ding is a powerful adverse prognostic factor (high-​risk 
feature) that should warrant consideration of adjuvant 
chemotherapy12.

The prognostic value of tumour budding in CRC 
is emphasized by the inclusion of this feature as an 
additional prognostic factor for this disease in the 
most recent TNM (2017) and WHO (2019) classifica-
tion schemes1–3 and as a recommended element in the 
College of American Pathologists and International 
Collaboration on Cancer Reporting protocols for CRC 
histopathology13,14. Emerging evidence suggests that the 
prognostic value of tumour budding extends to other 
tumour types, including head and neck, breast, lung, 
oesophageal, stomach and urogenital tract cancers;  
however, tumour budding is not yet considered an addi-
tional prognostic factor in the classifications of these 
cancers, largely owing to the lack of disease-​specific 
standardized scoring systems for the validation of this 
biomarker in retrospective multicentre studies and 
prospective randomized clinical trials.

In this Review, we provide an overview of the 
molecular and biological aspects of tumour budding, 
including its associations with EMT and the TME. We 
also highlight the emerging role of tumour budding  
in risk stratification across various gastrointestinal and 
non-​gastrointestinal cancers.

Pathogenetic and molecular aspects
Activating invasion and metastasis is a hallmark of 
cancer15. During the multistep invasion–metastasis pro-
cess, tumour cells undergo various biological changes 
that enable them to invade local tissues, intravasate into 
lymphatic and/or blood vessels, transit through the 
vascular system, extravasate into parenchymal tissues 
and finally seed micrometastases at distant sites. The 
developmental EMT programme, which is associated 
with increased motility, invasiveness and resistance 
to apoptosis, is often activated stably but transiently 
and to differing degrees in carcinoma cells during this 
process16–18. Tumour buds have long been hypothesized 

to be comprised of cells undergoing EMT. However, 
the investigation of tumour buds is almost always per-
formed histologically, which limits our understanding of 
the dynamics of this transition. Over the past 10 years, 
technological advances and an increasing number of 
publications have provided novel insights into the rela-
tionships between features of EMT, tumour budding and 
the characteristics of the associated TME.

First step: tumour cell dissociation
Tumour budding is a dynamic process of tumour cell 
dissociation from the main tumour mass. The findings of 
several studies indicate a prominent role of E-​cadherin, 
a cell–cell adhesion protein and crucial regulator of 
EMT, in this process. In particular, immunohistochem-
istry (IHC) analyses of tumour specimens from patients 
with CRC, pancreatic ductal adenocarcinoma (PDAC), 
oral squamous cell carcinoma (OSCC), endometrial 
cancer or oesophageal cancer have revealed dimin-
ished, and potentially completely absent, cell-​surface 
expression of E-​cadherin at the invasive tumour front 
and especially within tumour buds19–25. This loss of 
E-​cadherin is often accompanied by a concomitant 
decrease in the level of β-​catenin at the cell membrane 
and/or within the cytoplasm (but not necessarily by an 
increase in the level of nuclear β-​catenin), suggesting 
that WNT pathway signalling might be activated in these 
cells (Fig. 2). Repressors of E-​cadherin expression, includ-
ing the EMT-​associated transcription factors ZEB1, 
ZEB2, TWIST1, TWIST2, SNAI1 (SNAIL) and SNAI2 
(SLUG), have also been investigated in the context of 
tumour budding20,25,26. In a histopathological evaluation 
of 120 PDAC specimens, budding tumour cells were 
found to have increased expression of ZEB1 and ZEB2 
mRNA (detected using in situ hybridization) and pro-
tein, with associated decreases in the levels of mem-
branous E-​cadherin and β-​catenin, as compared with 
bulk tumour cells26 (Fig. 2). Tumour buds from OSCCs 
have been shown to overexpress SNAIL and TWIST1 
(by IHC) as well as ZEB1 (by RNA sequencing)25,27. 
Jensen et al.25 performed an ingenuity pathway analysis 
to compare the gene expression profiles of laser-​captured 
material from OSCC tumour buds with that of the cor-
responding central tumour regions. TGFβ was identified 
as a key upstream regulator of an EMT-​associated gene 
expression signature in tumour buds, which was charac-
terized by differential expression of 74 genes consistent 
with the activation of TGFβ signalling in tumour buds. 
Downstream of TGFβ receptor signalling, phosphory
lation of SMADs induces ZEB, TWIST and SNAIL 
family members and thus transcriptional repression of 
E-​cadherin28 (Fig. 2). Overexpression of TGFβ and dereg-
ulation of SMADs have been described in tumour bud-
ding cells29. Furthermore, other cell adhesion molecules, 
including CD44 and EpCAM, are often lost from the 
membranes of tumour buds30,31. In 2019, the authors of a 
systematic review and meta-​analysis focused on tumour 
budding in PDAC concluded that this morphological 
phenomenon is intimately associated with EMT32.

The overexpression of EMT markers is not always 
found in tumour budding cells. In an IHC analysis of 
32 intestinal-​type adenocarcinomas of the sinonasal 

Key points

•	Tumour budding is an independent prognostic factor across a variety of solid cancers.

•	In general, the higher the tumour bud count, the worse the clinical outcome.

•	Tumour budding is included as a prognostic factor in published cancer classification 
guidelines of the Union for International Cancer Control (UICC), the American Joint 
Committee on Cancer (AJCC) and the World Health Organization (WHO).

•	Grading systems for tumour budding vary between different types of solid cancers.

•	Tumour budding is strongly associated with epithelial–mesenchymal transition and 
various factors in the tumour microenvironment, where individual tumour buds 
interact with diverse components of the tumour stroma and immune system.

•	The development of international, evidence-​based, standardized scoring systems 	
for tumour budding is essential for future multicentre retrospective clinical studies 
and prospective randomized clinical trials in order to better define the different 
prognostic groups.
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tract, only the expression of ZEB2 was correlated with 
the presence of tumour buds; no statistically significant 
associations were observed for E-​cadherin, ZEB1, ZEB2, 
SLUG and SNAIL33. In CRCs, the expression of ZEB1, 
TWIST1 and TWIST2 is often not detected in tumour 
buds, with the upregulation of these factors instead being 
observed with stromal cells in regions of high-​grade 
tumour budding34,35, implicating cancer-​associated 
fibroblasts (CAFs) as potential mediators of this 
process (Fig. 2).

Second step: buds on the move
EMT is characterized by cytoskeletal rearrangements 
(for example, actin reorganization), cell motility and 
invasion, increased cell-​associated proteolytic activ-
ity and reprogramming of gene expression36. Evidence 
suggests that tumour buds share many of these traits. 
Gene ontology studies using RNA sequencing data from 
laser-​capture microdissected tumour buds (and paired 
central tumour areas) highlight marked differences in 
the expression of genes involved in integrin-​mediated 
cell adhesion, cell migration, cytoskeletal changes and 
extracellular matrix (ECM) degradation37. Of note,  
a monomeric form of laminin 5ɣ2 is often found to 
be increased during tumour invasion38. This protein is 
involved in the anchoring of epithelial cells to the under-
lying basement membrane and is overexpressed during 
the invasion and migration of cancer cells in vitro as 
well as in tumour buds, especially in patients with mis-
match repair-​proficient cancers37,39. Correspondingly, 
the upregulation or overexpression of laminin 5ɣ2 is 
associated with aggressive CRCs, OSCCs or squamous 
cell cancers (SCCs) of the lung and thus with unfavour-
able patient survival40–47. β-​catenin binding to TCF and 
LEF family transcription factors promotes the expres-
sion of several genes, including laminin 5ɣ2 (ref.48). 
Accordingly, decreased membranous and increased 
nuclear β-​catenin levels and positivity for laminin 5ɣ2, 
together with decreased E-​cadherin expression, are 
associated with tumour budding in patients with CRC45. 
Serial sectioning and IHC analyses of CRCs has revealed 
that tumour budding cells extend dendritic processes  
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Fig. 1 | Visualization of tumour budding by immuno­
histochemistry. a | Tumour microenvironment of a primary 
colon adenocarcinoma specimen containing several 
tumour buds (arrows) visualized through haematoxylin  
and eosin (H&E) staining. b | Immunohistochemical imaging 
of the same colon adenocarcinoma section re-​stained  
with a cytokeratin 8.18 stain (for the epithelial cell markers 
cytokeratin 8 and cytokeratin 18) reveals the same tumour 
budding area (arrows). The inset images in each panel show 
enlarged views of the tumour budding area. The budding 
grade of the tumour, defined according to the Interna
tional Tumour Budding Consensus Conference scoring 
system, was BD3 (high grade). c | Peritumoural budding 
(intermediate grade; BD2) visible in a confocal immuno
fluorescence image of a different colon adenocarcinoma 
specimen with cytokeratin 8.18 (orange) and DAPI (cyan) 
staining (60× magnification). The invasive margin is 
depicted projecting outward towards the lower right-​ 
hand corner. The edge of the bulk tumour is in the upper 
left-​hand corner. Arrows indicate tumour buds.
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Fig. 2 | Key processes involved in the tumour budding phenotype. The 
TGFβ and WNT signalling pathways as well as microRNAs of the miR-200 
family are key factors orchestrating tumour budding via the activation of 
repressors of E-​cadherin expression such as ZEB, TWIST and SNAI1 (SNAIL), 
transcription factors that are associated with epithelial–mesenchymal 
transition (EMT). Accordingly, loss of E-​cadherin and β-​catenin expression 
and/or accumulation at the cell membrane are frequently observed in 
budding tumour cells. Tumour buds typically have markers of extracellular 
matrix (ECM) degradation and cell migration, such as urokinase plasminogen 
activator (uPA) and matrix metalloproteinase 7 (MMP7) and MMP9, with the 
tumour cells projecting invasive podia (pseudopodia). Cells of tumour  
buds also express low levels of both the marker of cell proliferation Ki67  
and the pro-​apoptotic protein caspase 3 (CASP3) but overexpress the 
anoikis-​resistance marker TRKB. In addition, they can simultaneously express 

epithelial and mesenchymal proteins (such as cytokeratin and vimentin, 
respectively). Tumour buds are often surrounded by CD8+ T cells and FOXP3+ 
regulatory T cells and can be engulfed by CD68+ macrophages. However, 
budding tumour cells often lose expression of MHC class I molecules on the 
cell surface, which constitute an immune escape mechanism. Notably, 
tumour buds are infrequently found in colorectal cancers with microsatellite 
instability (MSI), perhaps because these tumour cells harbour high numbers 
of mutations and neoantigens and therefore tend to be intrinsically more 
immunogenic. Stromal cells in regions of high-​grade tumour budding, 
namely cancer-​associated fibroblasts (CAFs), also often express markers of 
EMT, such as TWIST1, SNAI1 and ZEB1, and a desmoplastic reaction nearly 
always occurs around the tumour buds. These stromal characteristics 
typify the CMS4 consensus molecular subtype of colorectal cancer. 
EpCAM, epithelial cell adhesion molecule; m, membranous.
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termed cytoplasmic podia (Fig. 2), which are hypo
thesized to be involved in cell adherence and move-
ment; these podia are positive for laminin 5ɣ2 and are 
associated with vessel invasion49,50.

The invasive front and tumour budding regions of 
CRCs are enriched with other markers of cell migration, 
including class III β-​tubulin and high motility group A 
(HMGA) family proteins51. Moreover, ECM-​degrading 
matrix metalloproteinases (MMPs), such as MMP7 
and MMP9, are reportedly overexpressed in tumours 
with high-​grade budding, in close correlation with 
the expression of urokinase plasminogen activator 
and cathepsin B (a protease that enhances the activity 
of MMPs and urokinase plasminogen activator)46,52–54 
(Fig. 2). In addition, known suppressors of metastasis, 
such as RAF kinase inhibitor protein (RKIP, also known 
as phosphatidylethanolamine-​binding protein 1) and 
maspin, are often disrupted and/or downregulated in 
tumour buds compared with the main tumour mass55,56.

The survival of detached cancer cells in the tumour 
stroma depends on mechanisms that counteract cell 
death, particularly anoikis (a form of apoptosis induced 
in anchorage-​dependent cells upon loss of requisite 
cell–cell or cell–ECM interactions), and enable cells to 
thrive in a hypoxic environment. Accordingly, tumour 
budding cells of CRCs and gastric cancers overexpress 
TRKB (Fig. 2), a marker of anoikis resistance, as well as 
hypoxia-​inducible factor 1α (HIF1α)57–59. Cell prolifera-
tion and migration are hypothesized to be mostly mutu-
ally exclusive processes, and thus the switch from cell 
proliferation to invasion might be triggered by hypoxia60. 
In line with this theory, IHC data indicate that tumour 
budding cells have either very low levels or an absence of 
proliferation markers61–64 (Fig. 2). Furthermore, tumour 
budding cells often overexpress stem cell markers, such 
as LGR5, ALDH1 and CD44, which indicates that they 
might have the capacity for self-​renewal, including at 
distant metastatic sites31,65–67. In fact, the prognosis of 
patients with CRC varies substantially depending on the 
profile of stem cell markers in tumour buds, suggesting 
heterogeneity in the invasive and metastatic potential of 
tumour budding cells68. However, the literature is much 
too sparse to comment further on the possible stem cell 
phenotype of tumour budding cells.

Taken together, evidence from IHC and RNA sequenc-
ing analyses suggests that tumour budding cells have the 
capacity to degrade the ECM and to invade and migrate 
through the surrounding stroma. Microscopically, 
tumour buds are often observed adjacent to or within 
the endothelium of either lymphatic or blood vessels — 
possibly caught in the process of intravasation and thus 
potential dissemination to distant tissues.

The hybrid EMT phenotype
EMT is described as a reversible process, whereby the 
loss of epithelial characteristics and acquisition of mes-
enchymal traits is temporary, rather than permanent36. 
The transitional state in which cells both downregulate 
epithelial markers and simultaneously upregulate mes-
enchymal ones is often described as partial or ‘hybrid’ 
EMT. If tumour budding cells, or a subset thereof, exist 
in this hybrid EMT state, it follows that they should be 

observed to express, at some point in time, both epi-
thelial and mesenchymal markers. Indeed, 3–22% of 
tumour budding cells in CRC specimens were found 
to co-​express both cytokeratin (an epithelial marker) 
and vimentin (a mesenchymal marker) using two 
cell-​sorting techniques and confocal microscopy69. 
Tumour budding cells with a spindle-​like morphology 
and overexpression of vimentin have also been described 
in OSCCs and PDACs70,71 (Fig. 2). The prognostic effect 
of large numbers of tumour budding cells with a hybrid 
EMT phenotype remains unknown but this charac
teristic is hypothesized to reflect an enhanced capacity  
for tumour dissemination and metastasis.

Tumour budding as a dynamic process
Evidence from electron microscopy studies of CRC 
specimens suggests that the invasive edge of tumours 
has a highly dynamic nature and contains a subpopu
lation of cancer cells with ultrastructural elements 
compatible with motility, including tumour buds72. 
Histomorphologically, tumour budding is associated 
with the so-​called ‘infiltrating growth pattern’ of CRCs, 
which is characterized by finger-​like tumour projec-
tions that extend into the stroma73. 3D reconstruction 
models of CRCs, PDACs, lung cancers and breast can-
cers show that many clusters of tumour buds are in fact 
still interconnected with the tumour mass via these 
projections and that ‘true’ isolated tumour buds are 
rare (9–22%)74. Thus, single-​cell invasion might be an 
exceedingly uncommon event, and tumour budding 
seems to predominantly reflect collective tumour cell 
migration. This hypothesis is also supported by elec-
tron microscopy findings reported by Prall et al.75. In 
the 3D reconstruction study74, the morphology of cells 
in tumour buds versus main tumour branches was com-
pared, with rounded and spindle-​like morphologies 
chosen as surrogate parameters for loss of polarization 
and EMT, respectively. Spindle-​like cells were rare but 
occurred significantly more frequently in tumour buds 
(P < 0.001) than in main tumour branches. Rounded 
cells were more frequent than spindle-​like cells and 
were also more frequent in buds versus tumour branches 
(P < 0.001). Tumour buds were also more frequently pos-
itive for ZEB1 and had reduced E-​cadherin expression 
(particularly on the cell membrane) relative to cells of 
the main tumour branches; however, no changes in 
pan-​cytokeratin expression were observed, possibly 
reflecting the hybrid EMT phenotype74.

Molecular features of budding tumours
In 2015, Guinney et  al.76 proposed the Consensus 
Molecular Subtypes (CMS) classification of CRC based 
on a combined analysis of RNA sequencing data from 
various international cohorts. Specifically, they iden-
tified four different CMS of CRCs with distinct gene 
expression profiles, as well as a small group of unclas-
sifiable tumours. CMS1 cancers typically have micro-
satellite instability (MSI), DNA hypermethylation and 
a high level of immune cell infiltration and activation. 
CMS2 tumours are considered canonical CRCs with 
activated WNT signalling, CMS3 encompasses a group 
of highly metabolic CRCs and CMS4 tumours have a 
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mesenchymal phenotype. Prognostically, CMS4 cancers 
are associated with the worst overall survival (OS) out-
come. The gene expression profile of CMS4 is indeed 
characterized by the upregulation of mesenchymal genes 
and of genes involved in TGFβ signalling and EMT, as 
well as by ECM remodelling, angiogenesis, stromal infil-
tration and overexpression of β3 integrin. In an analysis 
of 1,320 CRCs77, high-​grade tumour budding was sig-
nificantly more common in the CMS4 subgroup than in 
the epithelial CMS2 and CMS3 subgroups (P < 0.01 for 
both comparisons). Notably, the results of laser-​capture 
microdissection studies demonstrate heterogeneity 
in gene expression profiles within individual CRCs 
and also OSCCs, with upregulation of genes related to 
EMT and TGFβ signalling occurring predominantly 
at invasion fronts and/or tumour budding regions25,78. 
Indeed, De Smedt et al.78 report a ‘CMS-​switch’ from  
the epithelial CMS2 signature in the tumour centre to the  
mesenchymal CMS4 in regions of tumour budding.

Mesenchymal markers are also expressed in tumours 
with high chromosomal instability (CIN)79. In vitro, high 
CIN is correlated with the expression of vimentin and 
β-​catenin, cytoskeletal reorganization, and an increase 
in the migratory and invasive behaviour of cancer 
cells79. This phenotype is promoted by oncogenic KRAS, 
which is commonly associated with CIN and has been 
implicated as a driver of cellular plasticity and EMT80. 
Numerous — albeit not all — studies of tumour bud-
ding in CRC have provided evidence of a close associ-
ation between this process and KRAS mutation49,81–83. 
For example, significantly more cytoplasmic podia have 
been noted in KRAS-​mutant than in KRAS-​wild-​type 
CRCs (P < 0.001)49.

MSI, which results from defects in DNA mismatch 
repair mechanisms, is another form of genomic insta-
bility and is mutually exclusive with CIN. Interestingly, 
both tumour budding84 and laminin 5ɣ2 expression40 
are less common in MSI-​high sporadic CRCs and here
ditary nonpolyposis CRCs than in microsatellite-​stable 
(CIN-​positive) CRCs.

The presence of tumour buds seems to be, at least in 
part, epigenetically regulated by microRNAs (miRNAs) 
expressed in the tumour cells and/or surrounding stro-
mal cells. Different miRNA signatures of tumour budding 
have been identified in CRCs, PDACs and OSCCs85–88. 
miRNAs of the miR-200 family are some of the most 
important regulators of EMT: increased expression of 
miR-200 miRNAs causes post-​transcriptional repression 
of ZEB1 expression89. Tumour buds from both PDACs 
and CRCs have reduced levels of miR-200 miRNAs  
(particularly miR-200c) relative to the main tumour 
mass86,90 in association with increased ZEB1 and ZEB2 
expression (Fig. 2). By contrast, overexpression of miR-21, 
which is not a member of the miR-200 family, has been 
described in budding CRC cells and was correlated with 
laminin 5γ2 expression88, potentially reflecting EMT.

The attacker versus defender model
MSI-​high cancers have been hypothesized to have 
limited levels of tumour budding owing to the exten-
sive inflammatory cell infiltrates that are often associa
ted with these tumours. The MSI phenotype is associated 

with the generation of neoantigens that can be recog-
nized as non-​self by the immune system, thus result-
ing in a local immune response capable of eradicating 
tumour budding cells91. Loss of MHC class I expression, 
which can enable evasion of the adaptive arm of this 
immune response, has been reported in tumour buds 
and is associated with an unfavourable prognosis92; 
however, immunostaining of CRC specimens for CD68 
and pan-​cytokeratin has revealed engulfment of invad-
ing tumour cells (presumably tumour buds) by stromal 
macrophages93, highlighting the defensive role of the 
innate immune system against tumour budding (Fig. 2). 
CD8+ T cells, FOXP3+ T cells and CD68+ macrophages 
are the most frequently detected immune cells in tumour 
budding regions of CRCs94. The density of these cells  
in budding areas might have a major role in the stratifi
cation of patients into favourable or unfavourable prog-
nostic subgroups94. All three of these cell types have 
previously been associated with clinical outcomes in 
patients with CRC and other tumour types95–99. In par-
ticular, the location and density of CD8+ T cells within 
CRCs have repeatedly been shown to be favourable 
prognostic features (with greater tumour infiltration 
associated with favourable outcomes)98 and are currently 
included as components in the internationally validated 
Immunoscore97,100.

The interactions between tumour buds and the 
defences against them has been referred to as an 
attacker–defender model101,102: on the one hand, tumour 
buds reflect an aggressive disease phenotype and, on 
the other, CD8+ T cells (and others factors) mediate the 
counterattack. Accordingly, combining tumour bud and 
CD8+ T cell counts in a ratio, termed the budding-​to- 
​T cell score, enables the improved prediction of nodal 
metastasis and OS in patients with stage I–IV CRC103,104. 
Moreover, the mean number of CD8+ T cells in close 
proximity to tumour buds (within 50 μm), determined 
through automated digital image analysis, has been 
reported to be prognostic of disease-​specific survival 
(DSS) in patients with stage II CRC103,104. Beyond CRC, 
an integrated genomic and immunophenotypic classi-
fication of PDAC revealed an ‘immune escape’ subtype 
occurring in 54% of patients and characterized by sparse 
T cell and B cell infiltrates, enrichment with FOXP3+ 
regulatory T cells, high-​grade tumour budding and a 
poor prognosis105.

Other stromal factors are implicated in the tumour 
budding phenotype. Not only are EMT markers, such as 
SNAIL, TWIST1, TWIST2, ZEB1 and ZEB2, expressed 
by CAFs in regions of tumour budding (Fig. 2), but also 
the density and type of desmoplasia are linked to can-
cer invasion34,106. Buds from CRCs are predominately 
found within desmoplastic regions composed of ‘imma-
ture’ stroma that is associated with a high incidence of 
recurrence in the liver and lungs (as well as other sites) 
and with unfavourable OS, suggesting that this micro
environment is more permissive to tumour cell budding 
and invasion106.

Understanding the immune escape mechanisms of 
tumour buds as well as the signals from the tumour 
stroma that influence budding has the potential to 
inform novel treatment strategies. Thus, the interactions 
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between CAFs and tumour buds as well as between other 
cell types need to be further explored.

Prognostic relevance of tumour budding
Gastrointestinal cancers
Colorectal cancer. Tumour budding is a long-​established 
prognostic biomarker in CRC as emphasized by inclu-
sion of this feature as an additional prognostic factor for 
this disease in the most recent WHO classification of 
tumours3. Various meta-​analyses have demonstrated the 
prognostic value of this biomarker in different clinical 
settings, including oesophageal, gastric and pancreatico-
biliary cancers as well as CRC107,108 (Fig. 3). Until recently, 
however, the application of this biomarker in clinical 
practice was limited by the lack of a standardized assess-
ment and reporting methodology. This deficiency was 

addressed at the ITBCC in 2016, during which consen-
sus was reached on a standardized definition of tumour 
buds (single tumour cells or cell clusters of up to four 
tumour cells), histopathology method (buds counted in 
the ‘hotspot’ on a haematoxylin and eosin (H&E)-​stained 
specimen using a 20× objective lens, followed by nor-
malization to a field area of 0.785 mm2) and clinically 
relevant cut-​off values (low (0–4 buds), intermediate 
(5–9 buds) and high (≥10 buds), termed tumour bud-
ding grades BD1–BD3, respectively), based on a review 
of the existing evidence from retrospective studies and 
meta-​analyses12. This grading system has been validated 
in >26 studies, including at least 12,754 patients with 
CRC since it was published in 2017.

In the context of CRC, tumour budding could poten-
tially be considered relevant in three different clinical 

Nasopharyngeal adenocarcinoma (1 study)
• T stage and lymph node metastasis166 

• LVI166

• OS166b

Oral squamous cell carcinoma 
(36 studies; 1 meta-analysis)
• Lymph node metastasis27,161ª,163b,164 

• LVI and PNI163

• DFS161ª,162b,165b; RFS163; OS27,161ª,162b,163,164b

Note: only selected references are provided. The vast majority 
of studies in patients with oral squamous cell carcinoma have 
shown that high-grade tumour budding is associated with 
lymph node metastasis and both DFS and OS. 

Head and neck cancers

Adenocarcinoma (3 studies)
• Disease stage and pleural invasion5,170; 

lymph node metastasis170

• LVI5,170

• Risk of recurrence5b; OS5,170b

Squamous cell carcinoma (10 studies)
• T stage169,172; pleural invasion44,169,172; lymph 

node metastasis44,171,172,203; advanced-stage 
disease44,169,172 

• LVI44,169,171,172,203

• R1/2 resection status169

• DSS44,169b; RFS203b,204b; OS44b,169b,171b,172b,201b,202,203,204b

Lung cancers

Ductal adenocarcinoma (7 studies)
• T stage175; lymph node metastasis173,176

• LVI173,175,176

• DFS174b; CSS173b; OS174,175b

Breast cancer

Endometrioid adenocarcinoma (5 studies)
• Stage24; myometrial invasion24,178; lymph 

node metastasis178; FIGO grade178

• LVI178b

• OS24b

Endometrial cancer

Adenocarcinoma (3 studies)
• T stage/substage132,142,143; 

lymph node metastasis132,142,143

• LVI142,143; histological grade132,142,143

• OS132b,142b,143

Squamous cell carcinoma 
(14 studies; 1 meta-analysis)
• T stage129,130,133,136; 

lymph node metastasis21,130,133–135,139,140

• LVI21,129,130,133,135,136 
• DFS and/or OS21,128ª,129,130b,131b,132–134,135b,136b,137,138 

Oesophageal cancers

Intestinal type adenocarcinoma
(9 studies; 1 meta-analysis)
• T stage58,144–147; 

lymph node metastasis58,146,147,150b,151b

• LVI58,146; histological grade58,145–147,150,151

• Recurrence146; distant metastasis58; 
OS144b,145b,147,148ª,149b  

Gastric cancer

Pancreatic adenocarcinoma 
(6 studies; 1 meta-analysis)
• T stage196

• LVI196,199; histological grade198,199

• Distant metastasis197; OS32ª,70b,196b,198,199b,200b

Other (ampulla cancer, gallbladder cancer, 
cholangiocarcinoma; 4 studies)
• T stage155

• LVI155,158; histological grade155

• OS155b,156b,157b,158b

Pancreaticobiliary cancers 

Adenocarcinoma
(75+ studies; 7 meta-analyses)
• T stage6,12,125–127; 

lymph node metastasis6b12b,107ª,108ª,109b,110ª,127b

• LVI6,12,111,125–127; histological grade6,12,111,126

• RFS, CSS and OS6b,12b,107ª,111b,125b,126b,127b

Note: only selected references are provided. The majority 
of studies in patients with colorectal cancer have shown 
tumour budding to be an independent predictor of lymph 
node metastasis, RFS, CSS and/or OS. 

Colorectal cancer

Fig. 3 | an overview of the prognostic associations of tumour budding 
in cancers arising at various anatomical sites. Associations between 
high-​grade tumour budding and a higher T stage, lymph node metastasis, 
adverse histological features unrelated to disease stage, and unfavourable 
clinical outcomes are summarized. The number of published studies and 
meta-​analyses evaluating the prognostic implications of tumour budding in 
each type of cancer are noted, and references are provided for the studies 

that revealed statistically significant associations with the particular patho-
logical features and clinical outcomes reported in the figure. Definitions of 
high-​grade budding varied across different studies and across different ana-
tomical sites. CSS, cancer-​specific survival; DFS, disease-​free survival; FIGO, 
Fédération Internationale de Gynécologie et d’Obstétrique; LVI, lymphovas-
cular invasion; OS, overall survival; PNI, perineural invasion; RFS, relapse-​free 
survival. aMeta-​analysis. bIndependent association on multivariate analysis.
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scenarios: (1) determining the risk of lymph node meta
stasis in patients with early stage CRC and thereby 
informing on the need for radical surgery (that is, with 
lymph node dissection)108–110; (2) identifying patients 
with high-​risk stage II colon cancer, which is a poten-
tial indication for adjuvant therapy107,111; and (3) as an 
indicator of metastasis and a lack of response to neoad-
juvant therapy if detected in pre-​treatment biopsies112–114. 
The latter scenario requires a different methodological 
approach: in surgical specimens, PTB at the invasive 
front of the tumour is traditionally evaluated; however, 
in biopsy specimens, ITB should be determined11. 
Currently, no standardized approach exists for assess-
ing ITB in biopsy specimens, and thus tumour budding 
is not routinely assessed in this setting. Nonetheless, 
accumulating evidence indicates that the assessment 
of tumour budding in preoperative biopsy samples can 
be of prognostic utility across several different tumour 
types112–119. Several issues need to be addressed before 
the evaluation of tumour budding in preoperative biopsy 
specimens can be routinely implemented. First, scoring 
systems based on robust data need to be developed 
and might differ by cancer type. Second, the associated 
clinicopathological end points, such as the presence of 
metastases, extent of tumour regression after neoadju-
vant therapy, and/or disease-​free survival (DFS) and OS, 
need to be clearly defined. Third, the required number, 
size, quality and depth of the biopsy specimens must be 
established, all of which might vary between different 
tumour types.

Importantly, risk stratification according to the 
ITBCC grading system strongly depends on the clini-
cal scenario12. Specifically, both BD2 and BD3 are risk 
factors for lymph node metastasis in patients with pT1 
(stage I) CRC, whereas only BD3 is associated with an 
increased risk of recurrence and mortality in those with 
stage II CRC12. These observations were the main reason 

for adopting a three-​tier rather than a potentially sim-
pler two-​tier grading scheme. Moreover, a three-​tier 
system better reflects the nature of tumour budding as a 
continuous variable.

Results from two studies using the ITBCC grading 
system120,121 have validated the association between 
intermediate and high-​grade tumour budding (BD2–3) 
and an increased risk of lymph node metastasis in 
patients with pT1 CRC (Table 1), in line with the results 
of meta-​analyses involving data on tumour budding 
obtained using a variety of different definitions and 
methodologies108. The ITBCC grading system has also 
been used to analyse the prognostic value of tumour 
budding in a total of 1,978 patients with stage II CRC 
included in five independent studies122–126 (Table 1). 
The results consistently demonstrate favourable out-
comes in patients with low-​grade tumour budding 
(BD1), accounting for between 36%123 and 83%122 of 
patients, with a 5-​year DSS of 89–98%. Patients with 
intermediate-​grade (BD2) or high-​grade tumour bud-
ding (BD3) have a significantly worse 5-​year DSS  
of 52–80%. Most studies confirmed the importance of 
tumour budding through multivariate analyses. These 
findings suggest that patients with BD3 tumours, in 
particular, might be candidates for adjuvant therapy. 
Indeed, in the SACURA trial, adjuvant therapy with 
tegafur-​uracil was associated with a trend towards 
reduced 5-​year recurrence rates in patients with stage II 
colon cancer: 10.3% versus 14.8% with surgery alone 
in those with BD2 tumour budding (P = 0.189) and 
21.0% versus 26.4% with surgery alone in those with 
BD3 tumour budding (P = 0.295)126. Additionally, the 
ITBCC grading system has been successfully validated 
in a retrospective analysis of 952 primary-​operable stage 
I–IV CRCs in which high-​grade primary tumour bud-
ding was associated with TNM stage, venous invasion 
and reduced cancer-​specific survival (CSS)127.

Table 1 | Prognostic validation of the iTBCC tumour budding grades in pT1 and stage ii CRC

Study (year of 
publication)

n Disease setting Clinical 
end point

End point data according 
to iTBCC tumour budding 
grade (%)

P value Ref.

BD1 BD2 BD3

Backes et al. (2018) 148 Pedunculated pT1 CRC Metastasisa 20 35 0.04 120

Barel et al. (2019) 312 pT1 CRC Lymph node 
metastasis

6 21 0.016 121

Lee et al. (2018) 135 Stage II colon cancer DSS 89 73 52 0.001b 125

Nearchou et al. (2019) 446 Stage II CRC DSSc 87 69 64 0.028d 123

Romiti et al. (2019) 174 Stage II colon cancer DSS 98 80e 0.008f 124

Slik et al. (2019) 232 Stage II CRC DSS 90 55 70 0.001f 122

Ueno et al. (2019)g 991 Stage II colon cancer RFS 91 85 74 < 0.001f 126

van Wyk et al. (2019) 445 Stage II CRC CSS NA NA NA < 0.001f,h 127

ITBCC tumour budding grades are assigned through analysis of a single ‘hotspot’ on a haematoxylin and eosin-​stained specimen 
using a 20× objective lens, followed by normalization to a field area of 0.785 mm2, with grades defined as follows: BD1: 0–4 tumour 
buds per hotspot; BD2: 5–9 tumour buds per hotspot; BD3: ≥10 tumour buds per hotspot. All studies were retrospective, and 
5-​year disease-​specific survival (DSS) or relapse-​free survival (RFS) is reported, unless otherwise specified. P values are for 
comparisons across all tumour budding grades, unless otherwise noted. CRC, colorectal cancer; CSS, cancer-​specific survival; 
ITBCC, International Tumour Budding Consensus Conference; n, number of patients; NA, not available. aCase–control study that 
included both patients with lymph node metastases and patients with distant metastases. bMultivariate analysis not performed. 
cDSS at 9.3 years. dOnly a statistically significant prognostic marker on univariate analysis. eWithout chemotherapy. fIndependent 
prognostic marker on multivariate analysis. gProspective study. hP value refers to BD3 versus BD1/2.
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Oesophageal and gastric cancers. The results of sev-
eral studies have linked high-​grade tumour budding 
in oesophageal SCCs (ESCCs) with adverse clinical 
outcomes21,128–138, lymph node metastasis21,130,133–135,139,140, 
T stage129,130,133,136 and other adverse histological fea-
tures21,129,130,133,135,136 (Fig. 3). High-​grade tumour budding 
was an independent predictor of adverse outcomes on 
multivariate analysis in some of these studies130,131,135,136 
but not in others133,134,139. In most studies, tumour buds 
were counted in the hotspot on H&E-​stained specimens 
using a 20× objective lens21,129–132,135,136,141, with a cut-​off 
of ≥5 buds most frequently used to define high-​grade 
tumour budding21,129–132. However, other researchers have 
leveraged cytokeratin IHC133 or applied different cut-​offs 
(≥3 buds)21,135,136 or different approaches to classification, 
for example, based on the presence versus the absence 
of tumour budding134,139,140 or averaging of tumour 
budding counts over multiple fields137,138. Tumour bud-
ding has the potential to aid clinical decision-​making in  
the context of superficially invasive ESCC, whereby the 
ability to predict lymph node metastasis might help 
to select patients for radical surgery (that is, extended 
oesophagectomy with lymphadenectomy) following 
endoscopic tumour resection. Indeed, evidence from 
several studies demonstrates that tumour budding is 
associated with lymph node metastasis in patients with 
early stage ESCC21,134,135,139–141, although independent 
predictive value remains to be established. Thus, large 
multicentre studies are required to determine the opti-
mum methods and thresholds for defining high-​grade 
tumour budding in ESCC and to establish its independ-
ent predictive value before this biomarker is ready for 
use in clinical decision-​making.

Evidence indicates that tumour budding might also 
be predictive of adverse outcomes in patients with ade-
nocarcinomas of the oesophagus and gastroesopha-
geal junction (Fig. 3). In a study of 287 oesophageal and 
gastroesophageal junction adenocarcinomas, tumour 
budding was associated with T stage, lymph node metas-
tasis and poor tumour differentiation and was found to 
be an independent predictor of OS132. Similarly, results 
from an analysis of 210 surgically resected pT1 oeso
phageal adenocarcinomas demonstrated that tumour 
budding is an independent predictor of lymph node 
metastasis and OS142. In a third study143, ITB (but not 
PTB) was associated with decreased OS, although this 
association was lost on multivariate analysis. Further 
studies are needed to better define the prognostic role 
of tumour budding in oesophageal adenocarcinomas.

Findings of numerous studies have linked tumour bud-
ding with adverse clinical outcomes58,144–149, T stage58,144–147,  
lymph node metastasis58,146,147,150,151, lymphovascular 
invasion58,147 and histological grade58,145–147,150,151 of gas-
tric cancers (Fig. 3). These associations predominantly 
apply to intestinal-​type gastric cancers because most 
diffuse-​type gastric cancers would be classified as pos-
itive for tumour budding owing to their discohesive 
growth pattern8,147. The potential of tumour budding 
to influence clinical decision-​making might be greatest 
in the early stage disease setting, in which predicting 
lymph node metastasis could facilitate the selection of 
patients for radical gastrectomy following endoscopic 

tumour resection. In a series of 276 patients with well 
or moderately differentiated, tubular or papillary-​type 
submucosal early stage gastric cancers undergoing radi
cal gastrectomy, tumour budding was found to be an 
independent predictor of lymph node metastasis150. The 
prevalence of lymph node metastasis was 26% (39/150) 
in patients with tumour budding compared with 6.3% 
(8/126) in those without, and was as low as 3.7% (4/109) 
in those without both tumour budding or lymphovascu-
lar invasion150. Tumour budding was also independently 
associated with lymph node metastasis in a smaller series 
of patients with pT1a or pT1b gastric cancer (n = 126)151. 
Methodologies and cut-​offs for defining high-​grade 
tumour budding in gastric cancer have varied widely, 
thus limiting the role of tumour budding as a prognos-
tic biomarker in current clinical practice. As with oeso
phageal cancers, the optimization and validation of this 
biomarker in large, multicentre cohorts is required for 
its implementation in the management of gastric cancer.

Pancreatic and biliary tract cancers. The prognostic 
role of tumour budding in PDAC was systematically 
analysed in a meta-​analysis reported in 2019, which 
included data from a total of 613 patients involved in six 
eligible studies32. High-​grade tumour budding, defined 
as at least 10 tumour buds per high power field, was 
detected in 40.9% of patients and was associated with 
an increased risk of disease recurrence and of all-​cause 
mortality: RR 1.61 (95% CI 1.05–2.47; P = 0.03) and 1.46 
(95% CI 1.13–1.88; P = 0.004), respectively32.

Efforts have been made to better understand the 
pathogenetic mechanisms of PDAC through mole
cular characterization. Bailey et al.152 reported the 
molecular classification of PDAC on the basis of tran-
scriptional signatures, which enabled the identification 
of four disease subtypes: squamous, pancreatic pro-
genitor, immunogenic and aberrantly differentiated 
endocrine exocrine. Puleo et al.153 have also proposed 
a classification system based on gene expression anal-
ysis of formalin-​fixed PDAC specimens that includes 
five subtypes, namely pure basal like, stroma activated, 
desmoplastic, pure classical and immune classical. The 
disease subtypes identified in these two studies reflect 
both tumour-​related and host-​related factors and were 
associated with differences in clinical outcome, thus 
underlining the importance of the TME — including the 
immune landscape — in the prognosis of patients with 
PDAC. The interaction of tumour buds and immune 
cells in solid cancers underscores the importance of 
the immune landscape to classifications of disease 
subtypes. In PDAC, three immune phenotypes have 
been described102: (1) an immune-​escape phenotype 
characterized by high numbers of FOXP3+ regulatory 
T cells and M2-​like macrophages and lower numbers 
of CD3+ and CD4+ or CD8+ T cells, CD20+ B cells, and 
M1-​like macrophages, together with miRNA dysregula-
tion and high-​grade EMT-​like tumour budding102. This 
phenotype has molecular and clinical similarities with 
the squamous PDAC subtype described by Bailey et al.152 
and is associated with unfavourable clinicopathological 
features and a poor prognosis102. (2) An immune-​rich 
phenotype that has the opposite profile of immune cells 
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and tumour budding and is therefore associated with a 
better prognosis102 (sharing characteristics with the pan-
creatic progenitor subtype described by Bailey et al.152). 
(3) An immune-​exhausted phenotype defined by the 
upregulation of PD-​L1 expression in association with 
an immune-​rich TME, loss of DNA mismatch repair 
proteins and often high-​grade EMT-​like tumour bud-
ding, in association with a poor prognosis relative to 
other PD-​L1-​upregulated carcinomas102 (compatible 
with the immunogenic subtype reported by Bailey 
et al.152). The characteristics of the immune-​exhausted 
phenotype suggest that the immunosuppressive mech-
anisms convert a TME that is typically not permissive 
to tumour budding into a tumour budding-​permissive 
TME, potentially providing a therapeutic opportunity 
for PD-1 or PD-​L1 inhibitors. These findings are in 
keeping with the attacker–defender model of tumour 
budding and suggest that composite tumour budding 
and immune cell scores might have added prognostic 
value as demonstrated in the context of CRC97,101–103,154.

Tumour budding has also been detected in ampullary 
and gallbladder cancers and in intrahepatic and extrahe-
patic cholangiocarcinomas8,155–158. In these tumour types, 
high-​grade tumour budding, according to the definitions 
proposed by Ueno et al.159, Kai et al.160 and the ITBCC12, 
is associated with tumour progression and unfavourable 
OS on multivariate analysis8,155–158 (Fig. 3).

In summary, tumour budding seems to be a prom-
ising prognostic biomarker in patients with pancreatic 
or biliary tract cancers. Currently, however, the lack 
of an international standardized scoring system and 
the small number of published studies precludes the 
implementation of tumour budding in routine clinical 
practice.

Non-​gastrointestinal cancers
Head and neck cancers. In a meta-​analysis that included 
16 studies involving a total of 2,341 patients with 
OSCC161, high-​grade tumour budding according to var-
iable definitions was significantly associated with lymph 
node metastasis (OR 7.08, 95% CI 1.75–28.73) and with 
both reduced DFS (HR 1.83, 95% CI 1.34–2.50) and OS 
(HR 1.88, 95% CI 1.25–2.82 across all disease stages), 
compared with low-​grade tumour budding; several 
other studies have produced similar findings (Fig. 3). In a 
series of 246 patients undergoing primary resection of 
tongue SCC, high-​grade tumour budding was an inde-
pendent variable predicting unfavourable DFS and OS162. 
In a study involving 200 patients with OSCC163, tumour 
budding was correlated with lymphovascular and peri-
neural invasion and was significantly associated with the 
presence of lymph node metastases in those with early 
stage disease (P = 0.042) and shorter recurrence-​free sur-
vival in the entire cohort (P ≤ 0.0001); budding was also 
an independent predictor of lymph node recurrence in 
patients with resected stage I and II disease (adjusted  
HR 3.89). Xie et al.164 applied the ITBCC scoring system 
to tongue SCC specimens and found that a greater degree 
of tumour budding was correlated with adverse clinico-
pathological features, such as lymph node metastases, 
depth of invasion and unfavourable OS. Additionally, 
incorporation of the degree of tumour budding into the 

2017 WHO histopathological grading system resulted in 
increased prognostic value (with regard to DFS and DSS) 
in patients with early stage tongue SCC165.

A few studies have evaluated the biological aspects 
of tumour budding in head and neck cancers. In a small 
retrospective cohort comprising 56 patients with surgi-
cally treated OSCC (encompassing all stages), the pres-
ence of tumour budding correlated with the expression 
of SNAIL as well as lymph node metastasis and unfa-
vourable OS27. Through RNA sequencing, Jensen et al.25 
identified a distinct gene expression signature in bud-
ding cells characterized by increased expression of well- 
​established EMT transcription factors, such as ZEB1 and 
PRRX1, relative to that observed in central tumour cells 
(although no difference was found in levels of TWIST 
or SLUG expression). Furthermore, the tumour bud-
ding cells had upregulation of genes involved in TGFβ 
signalling25. These findings suggest that disrupting 
TGFβ-​driven EMT might be a promising strategy to 
improve the treatment of cancer.

High levels of expression of the stem cell marker alde-
hyde dehydrogenase 1 (ALDH1) have been reported in 
tumour budding cells of nasopharyngeal carcinomas166 
and in areas of OSCCs with high-​grade budding167. 
In addition, high-​grade tumour budding in OSCC cor-
relates with the expression of the stem cell marker CD44, 
which regulates cell proliferation and migration65. These 
observations suggest that tumour budding cells have 
stem cell-​like properties168.

Lung cancer. In 354 patients with resected primary lung 
SCC, high-​grade tumour budding (according to the 
ITBCC criteria) was associated with larger tumours, 
higher UICC/AJCC pT, pN and disease stages, medi-
astinal lymph node metastasis, pleural invasion, an 
R1/2 resection status, and unfavourable progression-​
free survival, DSS and OS169. Using a different grad-
ing system, Yamaguchi et al.170 identified statistically 
significant correlations between tumour budding and 
lymph node metastasis, tumour stage, lymphovascular 
or pleural invasion, and OS in 181 patients with small 
(≤3 cm in diameter) stage I–III lung adenocarcinomas. 
Tumour budding cells had reduced levels of E-​cadherin, 
β-​catenin and laminin 5γ2 expression as well as reduced 
levels of the differentiation marker surfactant protein A 
compared with tumour cells located in ‘nests’. The pre-
dominant papillary subtype was associated with tumour 
budding, whereas an absence of tumour budding was 
correlated with the bronchioloalveolar subtype170. 
Similar associations of tumour budding with adverse 
clinicopathological features and markers of an aggressive 
disease biology were observed in a series of 217 patients 
with resected primary lung SCC (stage IA–IIIA)44.  
Among patients in this cohort, 5-​year OS was higher in 
those without detectable tumour budding than in those 
with tumour budding (64.0% versus 45.6%; P < 0.001)44. 
These findings were mirrored by those of Masuda 
et al.171 in 103 patients with resected primary lung SCC: 
again, the presence of tumour budding was associated 
with both lymphatic invasion and lymph node meta
stasis, which translated into unfavourable OS171. More 
recently, Kadota et al.172 confirmed tumour budding as 
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an independent prognostic factor for OS in 485 patients 
with resected stage I–III SCC non-​small-​cell lung car-
cinomas. Additionally, high-​grade tumour budding 
was independently associated with an increased risk of 
recurrence (HR 1.61, 95% CI 1.13–2.29; P = 0.008) in a 
study including 524 patients with resected stage I lung 
adenocarcinoma5.

Despite these prognostic associations, method-
ological inconsistencies between the studies, espe-
cially regarding cut-​offs for defining high-​grade 
versus low-​grade budding, again limit the application of 
tumour budding as an adverse histological factor in clin-
ical practice. Thus, a validated and standardized scoring 
method for tumour budding in both adenocarcinomas 
and SCCs of the lung is essential to clarify the role of 
this emerging prognostic biomarker and its potential to 
guide therapeutic decision-​making.

Breast cancer. In a series of 474 patients with invasive 
ductal carcinoma, tumour budding correlated with 
adverse clinicopathological features, including lym-
phatic invasion, lymph node involvement, a high tumour  
stromal content, a low level of inflammatory infiltration 
and, ultimately, unfavourable CSS173. Tumour budding 
grade (defined as G1 (<5 buds), G2 (5–9 buds) or G3 
(≥10 buds) per 0.95 mm2 field) was significantly associ-
ated with DFS on multivariate analysis (P = 0.009) and 
OS on univariate analysis (P < 0.001) in 146 patients with 
operable invasive ductal breast cancers174. In 160 patients 
with surgically treated invasive ductal carcinoma, high-​
grade budding (≥8 buds) was associated with lympho-
vascular invasion, larger tumours and reduced OS in 
both univariate and multivariate analyses as compared 
with low-​grade budding (<8 buds)175. Tumour bud-
ding cells had decreased membranous E-​cadherin and 
nuclear Ki67 levels but increased vimentin levels com-
pared with those of cancer cells located in the tumour 
centre175. Salhia et al.176 investigated the utility of ITB 
and PTB as predictors of lymph node involvement using 
a series of 148 invasive ductal breast cancer resection 
specimens and 99 matched preoperative biopsy samples.  
A high number of PTB (average of >4 buds comprising 
1–5 tumour cells across 10 high-​power fields) in resec-
tion specimens was associated with both lymphatic 
invasion and lymph node metastasis. In the biopsy sam-
ples, high-​grade tumour budding (≥10 buds per high-​
power field) was correlated with venous invasion176. 
Interestingly, Laedrach et al.177 demonstrated differences 
in progesterone (but not oestrogen receptor or HER2) 
expression between tumour budding cells and non-​
budding tumour cells. Notwithstanding, further research 
is required to determine the utility of tumour budding as 
a prognostic factor in routine clinical practice.

Endometrial cancer. Only a small number of studies have 
evaluated tumour budding in endometrial cancer (Fig. 3). 
In a series of 95 patients with this disease, high-​grade 
tumour budding (defined as ≥5 budding foci per field) 
was associated with advanced tumour stage, myometrial 
invasion and reduced OS in univariate and multivariate 
analyses relative to low-​grade budding24. Tumour bud-
ding has also been associated with depth of invasion, 

an advanced FIGO grade, lymphovascular invasion and 
lymph node-​positive disease in a retrospective analysis 
of 96 endometrioid carcinomas; however, no statistically 
significant association with OS was observed178. The 
tumour budding cells had a loss of oestrogen receptor 
and progesterone receptor expression as well as reduced 
expression of E-​cadherin178. Further studies are required 
to determine the prognostic value of tumour budding in 
endometrial cancers.

Cervical cancer. The prognostic value of tumour bud-
ding in early stage SSCs and adenocarcinomas of the 
uterine cervix has also been investigated. In a cohort pre-
dominantly comprising women with SSCs, high-​grade 
tumour budding (≥5 buds) was found to be an inde-
pendent prognostic factor for DFS and OS179. However, 
in women with adenocarcinomas, tumour budding was 
associated with unfavourable DFS and CSS on univari-
ate but not on multivariate analysis180. Additionally, the 
degree of tumour budding has been combined with cell 
nest size in a scoring system for the histopathological 
grading of cervical cancers181. This novel grading system 
was independently predictive of DFS, DSS and OS, with 
superior prognostic performance compared with the 
conventional WHO grading system and was proposed 
as an additional histopathological parameter for daily 
routine diagnostics181.

Urothelial cancer. The prognostic value of tumour bud-
ding in urothelial carcinomas has only been investigated 
in a series of 60 patients with muscle-​invasive bladder 
cancer182. No correlation was found between tumour 
budding and tumour necrosis, lymphovascular inva-
sion, perineural invasion, metastasis, progression-​free 
survival or OS182.

Methodological considerations
Tumour budding is typically assessed using H&E-​stained 
specimens, although the use of pan-​cytokeratin IHC has 
also been frequently used. Both techniques have advan-
tages and disadvantages. Morphological and cytological 
atypia as well as cellular context can be better appreci-
ated with H&E staining; however, tumour buds can be 
difficult to identify on a background of peritumoural 
inflammation and activated fibroblasts can resem-
ble and therefore be misinterpreted as tumour buds. 
Pan-​cytokeratin can highlight tumour buds (Fig. 1b) and 
improves interobserver agreement at the patient level, 
although tumour areas containing fragmented glands are 
distracting and must be avoided in the budding count183.

Historically, definitions, scoring methods and grad-
ing schemes for tumour budding have varied widely. For 
example, tumour buds have been defined as single cells 
or clusters of up to either 4 or 5 cells, depending on the 
publication. Numerous different methods have been 
used to categorize tumour budding, including those 
proposed by Hase et al.184 (qualitatively defined as none/
minimal, moderate or severe), Ueno et al.185 (negative 
or positive status defined by <5 buds and ≥5 buds, 
respectively, within a 20× objective area of 0.785 mm2), 
and Nakamura et  al.186 (none, half, two-​thirds or 
greater than two-​thirds of the invasive tumour margin 
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with budding) and have involved the analysis of single 
hotspots or a 10-​hotspot approach, on H&E-​stained 
or pan-​cytokeratin specimens, at 20× or 40× magnifi-
cation. These scoring systems have been summarized 
elsewhere187,188. The ITBCC guidelines12, based on evi-
dence primarily from large-​cohort studies conducted in 
Japan, recommend reporting absolute budding counts 
in an area of 0.785 mm2 on H&E-​stained specimens 
within a single hotspot and grading the severity as BD1 
(0–4 buds), BD2 (5–9 buds) or BD3 (≥10).

Interestingly, work by Bokhorst et al.189 highlights 
some of the challenges that expert pathologists face in 
identifying individual tumour buds, chiefly whether 
or not a ‘candidate’ tumour bud is indeed a true bud. 
Computational pathology approaches could potentially 
help to improve the standardization of budding counts 
as well as automating this process. Several groups have 
published algorithms for the detection and quantifica-
tion of tumour buds, which have been applied to the 
analysis of budding in CRC88,104,122,190–193, muscle-​invasive 
bladder cancer194 or OSCC195. All of these algorithms 
are based on pan-​cytokeratin IHC or immunofluores-
cence; automated or semi-​automated machine learning 
approaches using H&E-​stained specimens are yet to be 
reported.

Conclusions
The prognostic value of tumour budding in patients 
with CRC is now well established. In addition, emerg-
ing evidence suggests that tumour budding has prog-
nostic value in an expanding list of gastrointestinal and 
non-​gastrointestinal malignancies. The availability of 
the standardized ITBCC grading system for CRCs has 
supported the status of tumour budding as an addi-
tional prognostic factor in the 2017 UICC/AJCC TNM 
classification and has facilitated the inclusion of tumour 
budding in the 2019 WHO classification of tumours1,3 
and as a recommended element in the CRC pathology 
protocols of the College of American Pathologists and 

the International Collaboration on Cancer Reporting13,14. 
Since the publication of the ITBCC recommendations 
in 2017 (ref.12), the proposed scoring method has been 
validated in 25 retrospective studies as well as in a pro-
spective study, with two main clinical implications: (1)  
the tumour budding grade, along with other clinico-
pathological factors, can aid the selection of patients 
with pT1 CRC for radical surgery; and (2) high-​grade 
tumour budding is a high-​risk feature in patients with 
stage II CRC and can warrant the consideration of 
adjuvant chemotherapy.

Less published data are available regarding tumour 
budding in non-​CRCs, although the body of biolog-
ical, molecular, pathogenetic and clinical evidence 
suggests that the mantra ‘the more tumour buds, the 
worse the clinical outcome’ applies to all solid cancers. 
Internationally standardized and validated grading sys-
tems for the assessment of tumour budding in individual 
cancer types will be essential to further advance the field 
by providing a solid basis for multicentre retrospective 
or prospective clinical studies.

Biologically, tumour budding is intimately associated 
with EMT, and tumour buds are a key component of the 
TME. The aggressive biology of tumour buds is closely 
related to an increased capacity for tumour cell dissocia-
tion, migration and infiltration. The interaction between 
tumour buds as a tumour-​related factor and immune 
cells as a host-​related factor reflects the attacker–
defender model, with important prognostic and, poten-
tially, therapeutic implications. Promising avenues for 
current and future research include the application of 
digital pathology to improve the accuracy and reproduc-
ibility of tumour budding assessment in clinical practice 
and the delineation of the molecular and pathogenetic 
mechanisms underpinning tumour budding, a deeper 
understanding of which might be a starting point for the 
development of ‘anti-​budding therapies’.
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